Task 3: Design of room illumination

Method 1

Simple method used for preliminary design of illumination system. Calculation requires uniform placement of light fittings over illuminated area. The result depends on illumination type, reflection coefficients of room surfaces, room height etc.

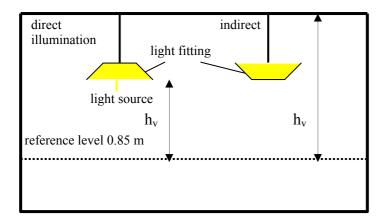
Required electricity input of lighting system :

$$P = p.A. \frac{10}{\eta_z} \frac{E_{req}}{100}$$
[W]

p.....relative input due to specific illumination output of light source

A....illuminated surface (room surface) $[m^2]$

 η_z ... specific illumination output of light source [lm/W] (Fig.3)


 $E_{req...required}$ illuminance [lx] (the luminous flux density at a surface, lumens per m²)

Room factor

$$\mu = \frac{W}{h_v}$$
[-]

w....room width (shorter room dimension) [m]

h_v...height of light sources above the reference level

Method 2

This method is based on luminous flux of a light source calculated form required illuminance of the room.

$$\phi_{req} = \frac{E_{req}.A}{z.\eta_e}$$

[lm]

 ϕ_{req} required light source luminous flux [lm]

- E_{req} required illuminance [lx] (average for the surface)
- A illuminated surface (room surface) $[m^2]$
- z maintenance factor

 η_e utilization factor

Utilization factor η_e

The factor depends on a light source luminous flux distribution, reflectance of walls and ceiling and a shape of room. Usually given by producers of lighting systems for each light source separately according to room index *m* and reflection coefficients of floor, walls and ceiling.

Room index

 $m = \frac{a.b}{h_v.(a+b)}$ h_v... height of light sources above the reference level a,b ..room dimensions

You may use for factor definition also Fig. 6

Maintenance factor z

The factor describes a changes of luminous flux from light source caused by ageing, fouling as well as changes of reflexivity of room surfaces. Values are usually between 0.5 - 0.7. Minimum value is 0.5.

 $\begin{array}{ll} z = z_z \ . \ z_s \ . \ z_{po} \ . \ z_{fz} \\ z_z & light source ageing \\ z_s & light fitting ageing and fouling \\ z_{po} & room surface fouling \end{array}$

 z_{fz} light source reliability

Design of light fittings and light sources number

A) Light fitting

The first step is a choice of light fitting with certain light sources inside. Then we have the luminous flux of one light fitting (producer catalogue required). The ratio of required light source luminous flux ϕ_z and luminous flux of one light fitting ϕ_{sv} gives the number of light fittings.

number of light fittings:

$$n = \frac{\phi_{req}}{\phi_f} \qquad \phi_f = \eta_f \cdot \phi_{fs} \quad [lm]$$

B) Light source

Direct calculation of light source number without definition of fitting number. The problem is, that sum of light sources luminous fluxes is not equal to luminous flux of light fitting – the efficiency and wave interference decreases the sum.

number of light sources:

$$=\frac{\phi_{req}}{\phi_{fs}\cdot\eta_{fs}}$$

n

 ϕ_{req} required light source luminous flux [lm]

- ϕ_{f} luminous flux of one light fitting [lm]
- ϕ_{fs} luminous flux of light sources in the fitting [lm]
- $\eta_{\rm f}$ light fitting efficiency (0.6 0.8) [-]
- $\eta_{\rm fs}$ light sources efficiency [-]

Homework 3

Design lighting system for 3 different room types in your residential building.

Fig.1 Residential building lighting

Room	required artificial illuminance [lx]
Overall room lighting with local lighting	50 - 100
Overall room lighting without local lighting	200 - 500
Dining room	200
Kitchen	100 - 150
Bedroom	100
Corridor	75
Bathroom, toilet	100

Fig.2 Local lighting (some activities)

Dining table	200 - 3001x
Reading, writing, drawing etc.	300 lx
Writing desk	500 lx
Filigree, sewing, modelling, etc.	300 - 750 lx
Reading on the bed	150 - 200 lx

Fig. 3 Specific illumination output of light source [lm/W]

Light source	η _z [lm/W]	R _a [-]
Common light bulb	10-18	100
Halogen bulb	20-30	100
Mercury-vapour lamp	40-60	10-60
Compact fluorescent tube	40-87	80-90
Linear fluorescent tube	50-110	40-80
Metal-halide lamp	60-130	70
High pressure sodium-vapour lamp	70-150	25-60-85
Low pressure sodium-vapour lamp	100-200	0

Fig. 4 Relative electric input p required to reach the average illuminance $E = 100$ lx related to
specific illumination output of light source 10 lm/W

	Room factor		Room walls and ceiling						
Illumination	μ [-]	Light surface Reflectance > 50%	Mediate Reflectance 30-50%	Dark surface Reflectance <30%					
	<2	25	28	30					
	2-4	19	20	22					
direct	>4	15	16	18					
	<2	42	60	80					
	2-4	28	36	48					
mixed	>4	20	26	32					
	<2	56	86	160					
	2-4	36	56	106					
indirect	>4	26	40	74					

White	0,75 - 0,80
Beige	0,60 - 0,70
Yellow – light	0,60 - 0,70
Yellow - dark	0,50 - 0,60
Red – light	0,40 - 0,50
Red – dark	0,15 - 0,30
Green – light	0,45 - 0,65
Green – dark	0,05 - 0,20
Blue – light	0,40 - 0,60
Blue – dark	0,05 - 0,20
Brown	0,12 - 0,25
Brown – light	0,40 - 0,60
Brown – dark	0,15 - 0,20
Black	0,01 - 0,03
Firebrick	0,25
Sand – light	0,50
Gypsum white	0,80 - 0,92
Marble	0,55 - 0,80
Granite	0,40 - 0,50
Wood – light	0,30 - 0,50
Wood – dark	0,10 - 0,25
Asphalt	0,10
Concrete paving	0,30
Earth	0,08 - 0,20
Steel	0,28
Aluminium – anodized, polished	0,75 - 0,85
Glass mirror	0,80 - 0,90
Window with bright glassing (outer side)	0,10
Window with bright glassing and white curtain	0,30 - 0,40
Snow	0,75 - 0,80

Fig. 5 Reflectance factors for different surfaces and colors

Fig. 6 Utilization factor η_e

A) Light bulb

	CEILING REFLECTANCE									
>5	0 %	WAL	REFLECT	30 - 50 %		< 30)%	ROOM	ILLUMIN	
>50 %	30 - 50 %	< 30 %	>50 %	30 - 50 %	< 30 %	30 - 50 %	< 30 %	m	ATION	
0.28 0,40 0.53 0.58 0,64 0,67	0.24 0.36 0.43 0.50 0.55 0.61 0.65	0,19 0,32 0,39 0,46 0,51 0,58 0,68	0.28 0.40 0.45 0.52 0.57 0.43 0.66	0,24 0,35 0,42 0,54 0,54 0,66	0,18 0,31 0,39 0,46 0,51 0,58 0,62	0,23 0,35 0,42 0,48 0,53 0,60 0,63	0.18 0.39 0.45 0.51 0.58 0.61	1100108	DIRECT	90-180*.02 η ₅ = 75% 0 -90* 175%
0,25 0,34 0,39 0,46 0,51 0,57 0,50	0.20 0.35 0.42 0.47 0.54 0.57	0,16 0,26 0,32 0,38 0,44 0,50 0,54	0,24 0,33 0,38 0,44 0,48 0,54 0,57	0,19 0,34 0,40 0,45 0,51 0,54	0,15 0,25 0,32 0,37 0,42 0,48 0,52	0,19 0,28 0,33 0,38 0,43 0,43 0,48 0,51	0,45 0,25 0,31 0,36 0,41 0,46 0,50	11200408	SEMI-DIRECT	90-480* 20λ η _k = 80% 0 - 90* 60%
0,17 0,23 0,28 0,35 0,40 0,40 0,44 0,51	0,12 0,18 0,22 0,30 0,34 0,41 0,45	0,09 0,15 0,49 0,25 0,30 0,34 0,41	0,15 0,21 0,25 0,30 0,35 0,40 0,45	0.140	0,08 0,13 0,17 0,22 0,27 0,32 0,37	0,09 0,14 0,18 0,23 0,24 0,31 0,35	0,07 0,12 0,15 0,20 0,23 0,29 0,32	1523468	COMBINATION	90-180°.35% η = 80% 0~90°:45%
0,17 0,21 0,27 0,31 0,38 0,42 0,47	0,14 0,18 0,23 0,27 0,33 0,37 0,43	0,11 0,14 0,23 0,33 0,33 0,39	0.14 0.17 0.22 0.25 0.30 0.33 0.38	0,11 0,14 0,21 0,27 0,30 0,35	0,09 0,12 0,16 0,19 0,24 0,27 0,32	0,08 0,10 0,13 0,16 0,20 0,22 0,26	0,07 0,09 0,12 0,14 0,18 0,20 0,24	0110346	SEMI-INDIRECT	90-180°40'3 7. = 80% 0 - 90° 20%
0,15 0,17 0,23 0,27 0,33 0,36 0,41	0,42 0,45 0,21 0,24 0,30 0,33 0,35	0,40 0,12 0,18 0,21 0,27 0,80 0,36	0,41 0,43 0,17 0,20 0,23 0,24 0,30	0,09 0,11 0,14 0,21 0,24 0,27	0,07 0,09 0,12 0,15 0,19 0,22 0,25	0,05 0,07 0,09 0,40 0,42 0,14 0,14	0,04 0,06 0,07 0,11 0,13 0,15	0,8 1,5 2,3 4 3 4 4	INDIRECT	90-180° 80% 74 - 80% 0 - 90° : 0%

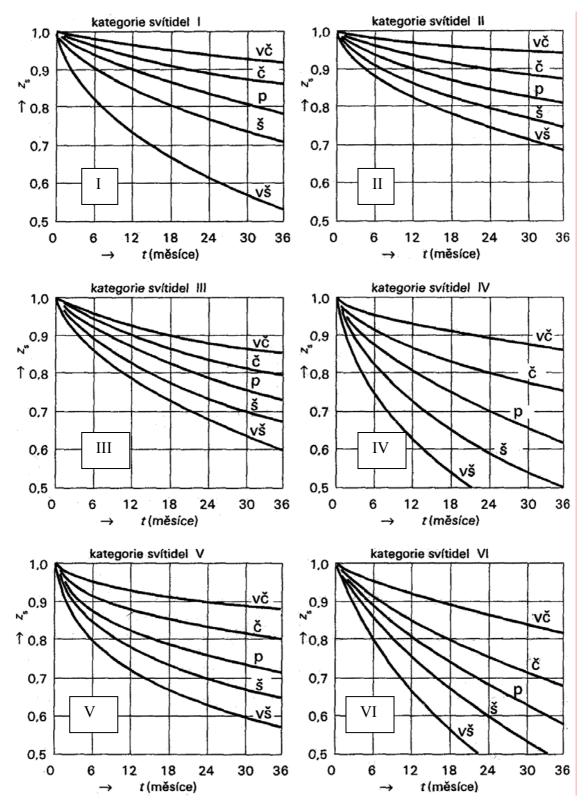

B) Light tube

	FLOOR	19652	Q,	5		0,1			
REFLECTANCE	CEILING	0,7 0,5		5	07		Q,S		
THE LEGISTICE	WALL	0,5	cp	Q5	50	0,5	0,3	0,5	0,3
F	OOM INDEX							E State	
	Q6	0,33	0,25	Q29	azı	931	0,25	0,28	0,22
EFAX Van	Q8	0,41	0,30	0,34	0,00	037	0,32	0,04	029
mEXXXVI	10	0,47	0,37	041	0,05	Q##	0,37	0,39	0,33
	1.950	0,54	Q46	0,46	0.0	0,50	0,43	Q44	0,38
o hartit		0.57	0.51	CIST	Q44	0.54	0.48	0,47	0,42
ed]		0.66	057	057	0,51	0,60	0,54	030	0,48
100 H288 27 X	7 2,5	0,71	0,64	0,61	0,56	0.64	0,57	0,56	0,52
EFXXX 4	7 30	0.75	Q.67	0,64	0.57	0.47	9.62	0,57	0,53
AND HXXX	7 40	0,80	075	9.69	0.44	971	0,67	GED .	Q57
0° 20° 40°	5,0	0,84	0,79	0,71	0,68	973	0,70	Q45	qa
terrar (anal)	0,6	0,24	0,28	0,33	027	0,33	0,27	0,72	0,20
HOP BOY	0.0	0.43	0,74	041	935	0.41	0,25	0.0	0,04
· CHITTY		0,47	0.42	0,47	041	0,46	0,41	045	0.0
NOTITIE .	125	0,56	047	053	047	0,52	946	0,50	0.45
	1,5	0,00	0,54	0,57	0,52	056	0.51	C.94	945
THE ROAD	20	0,67	Ga	0,64	0.59	0,65	0,57	0.89	0.5
		0,72	0,67	0,68	TAP	0.05	0.61	043	0,5
Im THY	30	075	071	071	0,07	0,67	0,64	0,65	0,43
300 HIL	40	0,80	076	0,75	0,71	070	0,48	0,68	0.6
0° 20'	5,0	0,80	079	0,77	0,74	0,72	cizo	0,70	que
a star sandalità a	Q.6	0,24	0,20	0,23	0,19	0,23	0,19	0,22	C/I
1807 1307	0,8	0,30	0,25	Q28	0,24	0,28	0,24	027	Q2
		0,34	0,29	Q32	0,25	0,12	0,28	an	Q2
2000	125	0,07	0,34	0,36	0,32	0.76	0,32	0,34	03
x XIIIA oc	r \\s	9.0	0,37	0,40	0,36	0,77	935	0,74	(q
INDE	20	Q47	043	0,44	90	0,13	90	0,41	00
wHHA XX		0,50	0,46	0,46	010	Q45	942		91
XXII two	30	C3Z	0,49	0,48	0,46	047			
80 144	40	0.56	10 C 10 C 10	QI	949		10.00		04
or 20*	50	0,58		0,53		051	0,49		04

Fig. 7 Maintenance factor z

A) Light source ageing z_z

Factor z_z defines drop of light source luminous flux during lifetime. (bulb lifetime 800 – 1000 hours, tube lifetime 8000 hours)



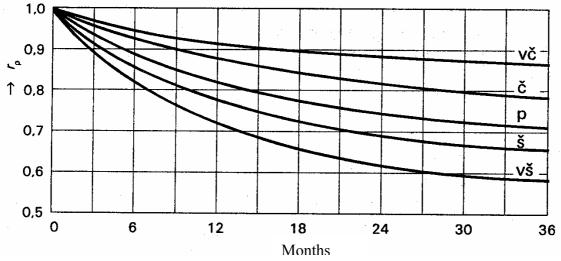
1 - Common light bulb 2 - Linear fluorescent tube 3 - High pressure sodium-vapour lamp 4 - Mercury-vapour lamp 5 - Halogen tube

B) Light fitting ageing and fouling z_s

Fouling and ageing of light source is the most significant influence to luminous flux decrease. Fouling may be eliminated with regular cleaning. The factor definition requires proper designation to one of six categories. If the light fitting corresponds to more than one category, than use lower category number.

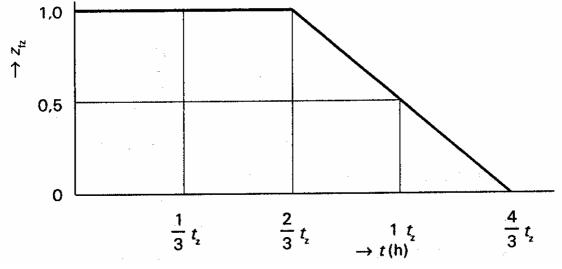
Time dependent change of fouling coefficient z_s for categories I to VI and different levels of cleanness of the space.

Category	Upper lamp-shade	Lover lamp-shade	
Ι	1. None	1. None	
П	1. None2. Transparent, openings $\geq 15 \%$	1. None	
11	 3. Translucent, openings ≥ 15% 4. Opaque, openings ≥15% 	2. Grid or lamina	
	 None Transparent, openings ≤15 % 	1. None	
III	 3. Translucent, openings ≤ 15% 4. Opaque, openings ≤ 15% 	2. Grid or lamina	
	1. Transparent, no openings	1. None	
IV	2. Translucent, no openings	2. Grid	
	3. Opaque, no openings		
	1. Transparent, no openings	1. Transparent, no openings	
V	2. Translucent, no openings	2. Translucent, no openings	
	3. Opaque, no openings		
	1. None	1. Transparent	
VI	2. Transparent	2. Translucent	
V I	3. Translucent	3. Opaque	
	4. Opaque		


Light fitting classification (acc. to standard ČSN 36 0450)

Proportion of the space pollution

Dirtinggo			Environment		
Dirtiness	very clean "vč"	clean "č"	average "p"	dirty "š"	very dirty "vš"
Rising in the environment	none	low production	apparent	high production	very high production
Transport form surrounding	none	scarcely any	low	high	very high
Level cleaning (filtration)	excellent	very good	average	low	none
Dirtiness adhesion	none	low	average (significant after long period)	high (significant in short period)	very high
Example	operating room, laboratory,	office, studio, classroom, residential rooms,	restaurant, gymnasium, light industry	heavy industry, paintshop, room with solid fuel boiler	the same as previous – lights are placed in the space of direct pollution


C) Room surface fouling z_{po}

This factor defines the illumination decrease due to the reflectance of room surfaces drop. Use minimum time period 2 years.

D) Light source reliability z_{fz} basically two cases:

- -
- defective light source immediately changed $z_{fz} = 1,0$ defective light source changed only for entire light fitting $z_{fz} \le 1,0$ -

light source lifetime \mathbf{t}_{z}