Homework no. 1

Using equations describing moist air processes, Mollier's chart a stream tables solve following examples. Consider constant total air pressure 100 kPa .

Example 1

In a freezer of volume 1001 is maintained temperature $-15^{\circ} \mathrm{C}$. Outside air has temperature $20^{\circ} \mathrm{C}$ and relative humidity 0.6 . Assume complete air exchange when freezer's door is open. Calculate the mass of icing (condensed and frozen water vapor) in the freezer when the number of door openings is 150 in month. Calculate total, sensible and latent heat of freezing process.

Example 2

Cooling water from a power plant condenser having mass flow rate $1100 \mathrm{~kg} \cdot \mathrm{~s}^{-1}$ and temperature $40^{\circ} \mathrm{C}$ is cooled in an open cooling tower to temperature $20^{\circ} \mathrm{C}$. Water is cooled by air having inlet temperature 20 ${ }^{\circ} \mathrm{C}$ and relative humidity 0.5 , outlet temperature is presumed $33^{\circ} \mathrm{C}$ and relative humidity 0.95 .
Calculate cooling air mass flow rate and necessary supply rate of water into cooling water which compensate evaporated water in a tower.
a) Use steam tables
b) Use Mollier's chart
(note: start with heat balance of a cooling tower between water and air)

