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A generalised stochastic model for the

simulation of occupant presence.

J. Page ∗, D. Robinson, N. Morel, J.-L. Scartezzini

LESO-PB, Bâtiment LE, Station 18, École Polytechnique Fédérale de Lausanne,

CH - 1015 Lausanne, Switzerland

Abstract

This paper describes an algorithm for the simulation of occupant presence, to

be later used as an input for future occupant behaviour models within building

simulation tools. By considering occupant presence as an inhomogeneous Markov

chain interrupted by occasional periods of long absence, the model generates a

time series of the state of presence (absent or present) of each occupant of a zone,

for each zone of any number of buildings. Tested on occupancy data from private

offices, the model has proven its capacity to realistically reproduce key properties

of occupant presence such as times of arrival and departure, periods of intermediate

absence and presence as well as periods of long absence from the zone. This model

(due to related metabolic heat gains), and associated behavioural models which

use occupants’ presence as an input, have direct consequences for building energy

consumption.

Key words: Energy simulation, occupants’ presence model, stochastic process,

Markov chain.
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1 Introduction

A large number of simulation tools are available for the estimation of a build-

ing’s energy consumption (such as ESP-r or ENERGY+) and very recently

new tools (proposed by [1] and [2]) have shown their capacity to simulate ur-

ban districts comprising buildings of various sizes and uses. The latter tools

emphasize the importance of implementing energy saving measures at the

equipment and building levels and reveal the potentiality of district-level en-

ergy generation and distribution. These tools may produce yearly profiles of

the energy needed by a building, for heating, cooling, lighting and ventilation

as well as for hot water and electrical appliances. Such tools may also be used

to size the associated heating, ventilation and air-conditioning plants (such as

separate boilers, combined heat and power plants, district heating systems,

photo-voltaic or solar thermal panels, etc.). An important issue in sizing these

production systems is to estimate peaks in demand that will have to be met. It

is therefore necessary to reliably estimate the fluctuations in energy consump-

tion. Stochastic variables linked to the climate and to the behaviour of the

buildings’ occupants have important influences on those fluctuations. While

high quality measured climate data is available at reasonably fine temporal

resolution, corresponding data linked to the occupant in all its stochastic va-

riety is scarce. However the modeling of occupant behaviour is starting to

bloom.

The influence of occupants on the building they occupy can be broken down

into several means of interaction (as discussed by [3]), each of which can be

∗ Corresponding author. Tel.: +41 21 6935557; Fax: +41 21 6932722
Email address: jessen.page@epfl.ch (J. Page).
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represented by a stochastic model as shown in figure 1. Being present within

the building is clearly a necessary condition for being able to interact with it.

Occupant presence is therefore an input to all other models and the model

for occupant presence will be central to the family of other stochastic models

[4]. As each human being emits heat and “pollutants” (such as water vapor,

carbon dioxide, odours, etc.), its presence directly modifies the indoor envi-

ronment. Occupants also interact with a building to enhance their personal

comfort. For example they will heat, cool or ventilate their environment to

improve their thermal comfort, they will adjust lighting systems or blinds to

optimize their visual comfort. Finally occupants’ interactions also relate to the

tasks that they are accommodated to perform: in an office building occupants

may use diverse electrical appliances tending to internal heat gains and the

consumption of electricity. In residential buildings, household appliances can

consume water (hot and cold) as well as electricity; occupants may also pro-

duce waste. A model capable of reproducing patterns of presence of occupants

in a building is therefore of paramount importance in simulating the behaviour

of occupants within a building and their effects on the buildings’ demands for

resources such as energy (in the form of heat, cold and electricity) or water as

well as the production of waste (which may be later used to derive energy).

Models for the simulation of occupant’s interactions with windows ([5] and

more recently [6]), lighting [7] and air-conditioning [8] have been developed

and these can directly benefit from a realistic input of occupant presence.

Interfaces to link models of occupant behaviour to various dynamic building

simulation tools have also been developed (such as SHOCC explained in [9]).

When applied to a single building simulation tool these stochastic models will

help to provide information on the distribution of the demand in energy and

therefore on how the production plants should be sized. When applied to a
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whole neighbourhood (this is possible with the software tool SUNtool [2]),

several energy supply scenarios can be tested in order to choose the right mix,

size and lay-out of different technologies (combined heat and power, district

heating and cooling, solar or wind power, etc.).

Currently the most common way of considering occupant presence within sim-

ulation tools is by using so-called “diversity profiles” [10]. These are used in

order to accurately estimate the impact of internal heat gains (from people,

office equipment and lighting) on energy and cooling load calculations of one

building. The profiles may depend on the type of building (typical categories

being “residential” and “commercial”) and sometimes on the type of occupants

(size and composition of a family for example). Weekdays and weekends 1 are

usually handled differently, especially in the case of commercial buildings. A

daily profile (either for a weekday or a weekend) is composed of 24 hourly val-

ues; each of these corresponds to a fraction of a given peak load. The weekday

and weekend profiles and the peak load are related to a particular category of

building and type of heat gain (metabolic heat gain, receptacle load, lighting

load); they may be based on data collected on a large amount of monitored

buildings. Alternatively the user of the simulation tool can also enter profiles

that (s)he deems best fit for the building in question. An annual load pro-

file for each type of heat gain is constructed by repeating the weekday and

weekend daily profiles and multiplying them by the peak load. The weakness

of this method lies in the repetition of one or possibly two profiles and the

fact that the resulting profile represents the behaviour of all the occupants of

a building. The latter simplification reduces the variety of patterns of occu-

pancy particular to each person by replacing it with an averaged behaviour.

1 Holidays are usually considered as weekends.
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The former simplification neglects the temporal variations, such as seasonal

habits, differences in behaviour between weekdays (that appear in monitored

data) and atypical behaviours (early departures from the zone, weeks of in-

tense presence and of total absence, unpredicted presence on weekends in the

case of office buildings - events that all appear in monitored data).

The use of a lighting appliance, and the corresponding implications for electri-

cal energy use, is obviously linked to the presence of its user. It is therefore of

little surprise that researchers developing lighting models have been the most

eager to account for the randomness of occupant presence in the most efficient

way. Hunt was the first to emphasize the importance of occupant interaction

with lighting appliances [11]. His work has been incorporated into simulation

tools such as ESP-r or SER-Res [12]. Later on Newsham [13] and Reinhart [7]

introduced a simple stochastic model of occupant presence in their work on the

Lightswitch model. They were interested in reproducing more realistic times

of arrival and departure of occupants to and from their offices and modified

the standard profiles mentioned above to this end. Their simulated occupancy

profile corresponds to working hours from 8:00 to 18:00 with a one hour lunch

break at noon and two 15-minute coffee breaks in the morning at 10:00 and

in the afternoon at 15:00 (that the occupant takes with a 50% probability).

To this they added the following:

“All arrivals in the morning, departures in the evening and breaks are ran-

domly scheduled in a time interval of ± 15 minutes around their official

starting time to add realism to the model.” [7]

This enables them to replace the unrealistic peaks mentioned above by a

more natural spread around a fixed average. Although this represents a cer-
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tain progress towards a realistic simulation of occupant presence the fact that

the major portion of the profile is fixed (presence of 100% during most of the

working hours, presence of 0% from 18:15 to 7:45, repetition of the same pro-

file for all weekdays and the assumption that the zone is unoccupied during

weekends) prevents the model from reproducing the variety both in behaviours

and over time of occupant presence. One important aspect of this restriction

is the lack of periods of long absence (corresponding to business trips, leaves

due to sickness, holidays, etc.) leading to an overestimation of the total yearly

presence and associated energy consumption, as recognized by the authors.

The appearance of occupants on weekends, their arrival before 7:45 and de-

parture after 18:15 are phenomena that are common to the real world but are

omitted by the model. Finally the absence of occupants outside of breaks is

also an event that it fails to simulate.

This last deficiency was studied by Wang [14]. She examined the statistical

properties of occupancy in single person offices. Based on her observations she

made the hypothesis that the duration of periods of intermediate presence and

absence (i.e. taking place between the first arrival of the occupant to the office

and her/his last departure from the office) are exponentially distributed and

that the coefficient of the exponential distribution for a single office could be

treated as a constant over the day. She was able to validate these hypotheses

in the case of absence but not in that of presence. To generate a simulated

pattern of presence in an office she estimated the two coefficients, supposed

to be constant, of the exponential distributions and generated a sequence of

alternating periods of presence and absence. In addition she generated the first

arrival to the office, the last departure from the office and a lunchtime break

based on the assumption that these are distributed normally as Reinhart had

6
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before her. The combination of the created profiles gave her a simulated time

series of presence that would vary from day to day. The model proposed is a

simple and elegant one, yet it still fails to reproduce the complexity of real oc-

cupant presence. As the authors acknowledge themselves, periods of presence

cannot be reproduced by an exponential distribution with a homogeneous co-

efficient, and times of arrival, of departure as well as absences during lunch

breaks are not normally distributed. Like all its predecessors the model sup-

poses that all weekdays are alike and that offices are always unoccupied during

weekend. Periods of long absence are also neglected so that total presence is

once again overestimated.

The latest model of occupant presence was proposed by Yamaguchi [15] in the

development of a district energy system simulation model. Their aim was to

simulate the “working states” (that they defined as using 1 PC, using 2 PC’s,

not using a PC and being out) of each occupant of a group of commercial

buildings in order to derive the heat and electrical load generated from the

use of energy consuming appliances. These stochastic loads combined with

those resulting from non-occupant related appliances of the buildings 2 deter-

mine the electricity, heating and cooling loads to be met by a suitable energy

supply system. Their model is similar to that of Wang in that it supposes that

the time an occupant will spend in a working state is independent of time

(in Wang’s model this corresponds to the coefficients of the two exponential

distributions). However it replaces the sequence of Poissonian periods of ab-

sence and presence by a mathematically equivalent (but computationally more

elegant) Markov chain of working states. The transition probabilities of the

2 It should be noted that the loads resulting from the use of lighting and appliances

used by groups of occupants are calculated based on fixed schedules.
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Markov matrix are determined by inputs to the model and the working state

of the occupant is drawn every 5 minutes using the “inverse function method”.

Moreover the times of arrival, lunch break and departure are now drawn given

by empirical distributions rather than a normal distribution centered around

fixed values. It is not clear in their explanation of the model in [15] whether it

is being used to simulate only one repeated day of occupant activity or each

and every day of the year. In the latter case it is also unclear whether week-

ends are treated differently or whether periods of long absence are considered;

we suppose that this is not the case. The calculation of an occupant schedule

for only one day, if this is the case, would be restrictive as we have argued

above and the lack of long periods of absence when simulating a whole year

would likewise be erroneous as we shall explain below. The hypothesis that

the duration of time an occupant spends in a given working state does not

depend on time (i.e. the time of day) is one that Wang proved to be wrong

in at least the case of presence; dividing the state of presence into different

states of working activity during presence will most probably not change that.

Although their model could prove useful when only considering the use of

PC’s, the hypothesis of time-independence shall cause difficulties when want-

ing to simulate less invariable activities such as the use of lighting appliances

or activities performed in residential buildings for example. We believe the

coupling of an independent occupant presence model to related behavioural

models to be a more general solution.

In line with this last statement, we propose in the following pages an alter-

native model for the simulation of occupant presence. By using a profile of

probability of presence, rather than an adjusted fixed profile, as an input to

a Markov chain we are able to produce intermediate periods of presence and
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absence distributed exponentially with a time-dependent coefficient as well as

the fluctuations of arrivals, departures and typical breaks. A failed attempt

to validate an earlier version of the model highlighted the importance of pe-

riods of long absence; these were included in the updated and latest version

presented here. Twenty zones of an office building were monitored providing

us with two years of data that was used for the calibration and validation of

the model. The latter was based on the analysis of indicators of importance

for the stochastic models of occupant behaviour that will use the results of

the model of presence as their input. Although tested with data from an office

building, this model, when given the corresponding inputs, is applicable to

any type of building and any pattern of occupant presence.

2 Methods

2.1 Model development

2.1.1 Aims

It is important to know what properties need to be reproduced by the model

as they shall serve as a guideline for its development and as indicators to be

checked during its validation. The model of occupancy is destined to deliver

the metabolic heat gains and pollutants released by the occupants within the

zone and to serve as an input for the use of windows, lighting appliances and

other electrical and water appliances (see figure 1). To serve this purpose it

needs to reproduce in the most reliable way properties of patterns of occupancy

such as the first arrival and last departure of the occupant, the duration of

the periods of intermediate presence and absence as well as of long absence

9
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Fig. 1. Outputs of the occupancy model and their later use by stochastic models of

occupants’ behaviour.

and the time of intermediate arrival for each and every occupant.

Patterns of occupancy are so diverse and complex that we decided that the

simplest way to develop a model capable of doing this was to build it from a

priori hypotheses and check later whether the above properties are reproduced

within reason.

2.1.2 Hypotheses

We are interested in simulating the presence of occupants within a specific

“zone” of a building. This corresponds to the area occupied by a household in

the case of residential buildings (typically a flat) and to a (single or multiple

person) office in that of office buildings. We are not interested in simulating

the movement of occupants from one zone to the other (a model for this has

been proposed by [16]), but simply whether each occupant is present within
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the zone or not.

The hypothesis of independence allows us to model in a simple way the pat-

terns of presence of each occupant individually. The presence of occupants

sharing the same zone can then be simulated by:

(1) multiplying the obtained pattern by the total number of occupants (this

case of collective behaviour would correspond to the occupancy of a

meeting-room),

(2) or by simulating each occupant separately and then adding the produced

patterns of presence.

We make the hypothesis that the probability of presence at a time step only

depends on the state of presence at the previous time step. In other words the

probability that an occupant is present now only depends on whether (s)he

was present one time step ago and not on whether (s)he has been present over

the past N time steps. Mathematically this statement corresponds to asserting

the following property on the conditional probability:

P (Xt+1 = i|Xt = j, Xt−1 = k, ..., Xt−N = l)

= P (Xt+1 = i|Xt = j) =: Tij(t) (1)

with Xt being the random variable “state of presence at time step t” and i,

j, k and l taking on values 0 or 1. This corresponds to considering the state

of occupancy as a Markov chain with probabilities of transition Tij(t) (for

more details on Markov Chains we direct the reader to [17]). The probability

that an occupant should arrive at the office at 8:00 or at 22:00 are clearly

not the same, therefore the values of Tij(t) need to be time dependent and

we have the general case of an inhomogeneous Markov chain (with discrete

11
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states and discrete time steps). 3 In order to determine the time dependence of

these probabilities of transition we will need the following inputs to the model:

the profile of probability of presence over a typical week and a parameter of

mobility that gives an idea of how much people move in and out of the zone.

2.1.3 Development

Based on our hypotheses we are looking for a model capable of generating a

time series of zeros (absence) and ones (presence) that renders arrivals into

and departures from the zone (typically going to work and coming from work

for residential zones, arriving at work and leaving from work for office zones) as

well as alternating short periods of presence and absence in between. It should

not simply reproduce the pattern given as an input (the profile of probability

of presence and the parameter of mobility) but create a pattern that never

repeats itself while reproducing the statistics of the real world it is simulating.

To do this we have based the model on the “inverse function method” (IFM)

that can generate a sample (in our case a time series) of events from a given

probability distribution function (PDF) as shown in figure 2. Earlier we made

the hypothesis that the value of occupancy at the next time step should only

depend on the state we are in now and the probability of transition from this

present state to either the same state (0 to 0; 1 to 1) or its opposite state (0

to 1; 1 to 0). These probabilities of transition T00, T01, T10, T11 are therefore

the PDF’s we need (in this case the values that the random variable can take

are discrete). Only two of the four variables need to be known, let us say T01

3 We will determine the initial state (at t0=00:00 on January the 1st) of the time

series as “present” for residential buildings and “absent” for office buildings.
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The inverse function method for the sampling of a random variable with a given probability distribution
function (pdf) – in this case a discrete pdf (Poisson with lambda=3):

step 1: Derive the cumulative distribution function(cdf) from the pdf
step 2: Generate random numbers distributed uniformly between 0 and 1
step3: Deduce the value taken on by the random variable.
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Fig. 2. Generation by the inverse function method of the series of values 5, 1, 3

based on a Poisson distribution with λ = 3.

and T11, as T00 and T10 can be deduced from T00 + T01 = 1 and T10 + T11 = 1.

As we have seen in previous models, the profile of probability of presence is a

rather standard input for a simulation tool including occupancy and should be

available to the user. 4 Having this as an input provides us with a relationship

for the probability P (t+1) that the occupant is present at the time step t+1:

P (t + 1) = P (t) · T11(t) + (1 − P (t)) · T01(t) (2)

From this we can deduce that :

T11(t) =
P (t) − 1

P (t)
· T01(t) +

P (t + 1)

P (t)
(3)

However, we still lack one piece of information to be able to determine uniquely

the value of T01 and T11 at all times. This further input to the model should

4 In the case of users unfamiliar with such inputs, default profiles corresponding to

types of occupants will have to be made available.
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make sense to the user who will be entering it. Keeping this in mind we defined

the “parameter of mobility” as the ratio between the probability of change of

the state of presence over that of no change:

µ(t) :=
T01(t) + T10(t)

T00(t) + T11(t)
(4)

To simplify the inputs to the model we consider µ(t) to be constant and to

assist the user of the model we have defined numerical values to levels of “low”,

“medium” and “high” mobility. Given relationships (3) and (4) and the inputs

P (t) and µ we should now have a complete profile of T01(t) and T11(t):

T01(t) =
µ − 1

µ + 1
· P (t) + P (t + 1) (5)

T11(t) =
P (t) − 1

P (t)
·
[
µ − 1

µ + 1
· P (t) + P (t + 1)

]
+

P (t + 1)

P (t)
(6)

Unfortunately not quite. For certain values of P (t), P (t + 1) and constant µ,

the condition 0 ≤ Tij(t) ≤ 1 can be violated. This typically happens when

P (t) is far greater or smaller than P (t + 1). This situation corresponds to an

almost deterministic change in behaviour, such as a regular time of first arrival

into the zone, a regular lunch break or a regular time of last departure from

the zone, rather than the random movement into and out of the zone rendered

by a constant value of µ. In these cases the model would fail to reproduce such

clear changes in occupancy when using the initial value of µ; to counter this

the model temporarily forces µ to take on the value that fulfills the above

condition and is closest to the initial constant. For an initial fixed value of

the state of presence at t0 we are now able to generate a time series of the

presence of an occupant within a given zone.

This first version of the model was calibrated with data of occupancy recorded
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in the offices of the LESO building (for more details on the building see [18])

and a preliminary validation was made by comparing the cumulated presence

over a week resulting from the original data and the simulations done with

the model. The data contained a great variety of results ranging from weeks of

total absence, corresponding to periods of leave due to sickness, work outside

of the office or vacations, to weeks of high cumulated presence, corresponding

to periods of overtime work and unusual presence over weekends. The model

was only capable of producing a Gaussian distribution around the average of

the empirical data. This showed that, although the Markov chain model works

well at reproducing periods of short absence and presence during one day, it

needs to be complemented in order for the model to generate long periods of

absence. These have been included by adding to the algorithm the possibility

to start, at random, a period of long absence at each time step. 5 To generate

them we need to know the probability of them happening and the parameters

that determine the distribution of their duration; these shall be new inputs

to the model. For the validation of this improved version of the model of

occupant presence the periods of long absence (lasting more than one day but

not corresponding to a weekend) were extracted from the empirical data and

treated to give the necessary inputs to the model. The remaining data was

used to calibrate the Markov chain.

2.1.4 Algorithm

The model was implemented as a MATLAB script. The presence of each oc-

cupant in each zone was simulated independently based on the inputs related

5 This means that periods of vacation will be distributed randomly over the year

rather than attributed to fixed days of the year.
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Fig. 3. Preprocessing stage: extraction from the inputs of the probability distribu-

tions needed for the inverse function method to be used in the processing stage.

to that occupant. The profile of probability of presence and the parameter of

mobility are used to determine the profile of T01 and T10 (see figure 3). The

occupant is considered to be absent in the case of office buildings and present

in that of residential buildings at t0, i.e. 00:00 of the 1st of January. From then

on the time series of presence is generated by using the IFM at each time step.

This method generally works by inverting the cumulated density function of

the random variable of interest, drawing uniformly a number between 0 and 1

and using the inverted cumulated density function (CDF) to relate the drawn

number to a value adopted by the random variable (see figure 2). In our case

the CDF is a histogram of two bins (0 and 1) or more (in the case of the

duration of periods of long absences). To each bin corresponds the probability

that a value within that bin be chosen at random. The number drawn between

0 and 1 will determine which of the bins has been chosen, in other words what

event will take place.

Figure 4 shows how the algorithm works: given the probability of starting a
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Fig. 4. Algorithm of the model (processing stage).

period of long absence (derived from the number of long absences happening

in a year, entered as an input) we first check whether the occupant starts

a period of long absence or not by using the IFM, if so we determine the

length of that absence given the distribution of the duration of periods of long

absences (entered as an input) with the same method, during which period the

occupant is considered to be absent. At her/his return, or if (s)he did not start

a long period of absence, we find ourselves in the case of the Markov chain of

“usual daily” changes in state of occupancy. The present state of occupancy

will tell us which profile of probability of transition to choose between T01
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and T10; the next state of presence is determined by the use of the IFM. By

doing so we are capable of generating a time series of the state of presence

of a particular occupant in a particular zone. The state of presence of each

occupant of one zone and the states of occupancy of different zones being

considered independent it is enough to repeat this algorithm as many times

as the number of total occupants, respecting, of course, the inputs particular

to each occupant simulated.

3 Results

3.1 Data collection

The data needed for the calibration and validation of the model was collected

from mid December 2001 to the beginning of January 2006 in 20 “zones” of the

LESO-PB building at the EPFL each equipped with a movement sensor. Of

these, ten zones were offices having seen their number of occupants vary over

the period of monitoring and five zones had not been constantly used as offices

(printer room, conference room, classroom and workshop). The remaining five

zones which had been singly occupied offices over the whole period of data

acquisition, were used for model calibration and validation. The people at the

LESO work mainly on research, sometimes taking or giving courses. Occupants

are very mobile often leaving their office to visit other zones of the same

building, such as the workshop, the library or computer-room or offices of

colleagues, or to leave the building. This may make the patterns of presence

not particularly representative of an office building (and even less so of a

residential building!). Nevertheless, this shall not weaken the validation of the
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model as it has been conceived to be independent of the characteristics of the

occupants to be simulated. Indeed only the inputs to the model (profile of

probability of presence, parameter of mobility, distribution of periods of long

absence) are related to the simulated occupants; the model itself, given the

right inputs, should be applicable to any type of building and any pattern of

occupant presence.

3.2 Treating data for calibration

The acquired data needed to be processed before information for the calibra-

tion and validation of the model could be extracted. Problems either with the

sensor, the bus used for the transfer of monitored data or with the server used

to store the data caused gaps within the acquired data, reducing the amount of

usable data to approximately 2 years and the longest period of uninterrupted

data acquisition to approximately 6 months. Also the acquisition system only

records changes of the variable to be acquired; in the case of occupancy this

means that the time and date are recorded:

(1) the first time the sensor notices motion in the office when it previously

considered it to be empty - this corresponds to a switch to the state

“occupied”,

(2) when the sensor has not noticed any movement for 30 seconds in an office

considered to be occupied - this corresponds to a switch to “vacant”.

The sensor only recognizes two states of presence: occupied or vacant, and can

therefore not distinguish whether the zone is multiply occupied or not. This
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however is not a problem, since the presence of guests in an office is dependent

upon whether the owner of that office is present so that the owner-occupant

presence is continuously accounted for. The first step in processing the raw

data was to check which days of acquisition had suffered from the “technical

problems” stated above and only conserving those that are completely intact.

This data was then cleaned of all periods of absence lasting less than 2 minutes

(this usually corresponds to a sensor that stops recording the presence of an

occupant because (s)he is too still for her/his movement to be noticed). We

then constructed a time series of the data with a 15 minute time step by

summing over each 15 minute interval the duration of periods of presence

and of absence and allocating to that interval the state with the longest total

duration.

The treated data could then be used for the extraction of information first

of all to deduce the inputs necessary to calibrate the model, then to have

reference data for its validation. The first step was to check the length of both

periods of presence and of absence. The periods of absence were then divided

into periods of “short” absence (less than 24 hours), of absence that could

be related to weekends and periods of “long” absence (greater than 24 hours

but not taking place over a weekend). 6 Periods of long absence were studied

to deduce the distribution of their duration and the average number of their

occurrences in one year, which will both serve as inputs to the model. The

long absences were removed from the time series and the remaining data was

6 Most intervals of acquired data are relatively short due to interruptions during

data acquisition (intervals range from 2 days to 6 months with the average dura-

tion being 2-3 weeks). This of course limits the sample of periods of long absence

available. It may also shorten periods of absence that could have lasted longer.
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used to provide information on the day-to-day occupancy such as the profile

of probability of presence and the profiles of probability of transition T01 and

T10. A profile of the parameter of mobility was deduced from the profile of T01

and T10 by using equation (4) and was then averaged to be used as input.

3.3 Validation

The occupancy model has been developed to simulate the time an occupant

spends in a particular zone but above all to produce a time series of presence

that will serve as an input for models capable of simulating the occupant’s

behaviour. Each of these models may have different expectations of the oc-

cupancy model’s output; while a model for the opening of windows needs

reliable information on the time of arrival of the occupant, a model for the use

of household appliances will need to know how long the occupant’s periods of

presence will last. In order to estimate the success of the model we listed the

statistics that should cover each of these expectations:

- effective total amount of presence will be given by the “cumulated pres-

ence per day” and “cumulated presence per week”,

- “first arrival” into the zone and “last departure” from the zone of each

day of presence, the difference between these two corresponds to the dura-

tion of “daily presence” (in contrast to the duration of effective presence

mentioned above),

- the duration of “periods of intermediate presence” and of “periods of

intermediate absence”,

- the “number of changes” of the state of presence during the same day.
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We then compared the distributions of those statistics deduced from the mea-

sured data and from simulated data produced by the model.

For each of the offices of the LESO building we produced a 5 year time series

based on its calibrated inputs. From these time series we calculated the profile

of probability of presence, the profiles of probabilities of transition T01 and

T10 and the profile of the corresponding parameter of mobility as well as the

distribution of the duration of long absences, in order to make sure that the

model’s output is still consistent with its inputs. While the profiles of prob-

ability of presence compare very well, the simulated values of the parameter

of mobility are clearly below those entered (see figure 5). This implies that

it is being recalculated relatively frequently so limiting its impact. The time

series used to calibrate the model and those resulting from the simulations

were then processed to produce the distributions of the statistics of interest

for comparison.

3.4 Discussion of results

In order to restrict the number of figures produced in this article we have de-

cided to show the results of four of our five singly occupied offices; by showing

the different behaviours of these four occupants we wish to show the reader

the generality of the model. The simulation of multiply-occupied offices shall

nevertheless not be a problem for the future use of the model as the user will

enter inputs for each occupant and each occupant will be simulated indepen-

dently (unless a dependent behaviour is required, for example in the case of a

meeting room).
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Fig. 5. Comparison, between the monitored data (solid blue line) and the simulated

time series (dotted red line), of the profiles of probability of presence (above) and

of the parameter of mobility (below) for office no.3.

The green solid lines correspond to data from the monitored offices, the red

dotted lines are the results from the simulations. We have shown both the PDF

and the CDF of the statistics. For comparison we have added to the CDF’s the

histogram(s) equivalent to a standard deterministic representation of occupant

presence used in dynamic thermal simulation programs of buildings: 100%

presence on weekdays from 8:00 to 12:00 and from 14:00 to 18:00. The results

from the monitored data provide us with a valuable insight into what the

statistics really look like and in understanding the influence of occupants on

the building. We will now discuss the different categories of statistics and

observe how well the model reproduces what happens in reality.
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3.4.1 Arrivals into and departures from the zone

The first category of interest is that of the first arrival of the occupant into

the zone and her/his last departure from the zone (shown in figures 6 and

7). The difference between the two, the “daily presence” (shown in figure 8),

gives us an idea of how long the occupant could have interacted with the

zone, although (s)he might not have always been present during that interval.

The behaviour of occupants is usually very different at their first arrival and

last departure than during any intermediate arrivals and departures. The first

arrival of the occupant usually corresponds to the setting by the occupant of

her/his environment to her/his favourite configuration, for example the setting

of the state of the blinds, the state of the lights and appliances, the set-point of

the heating system or the opening status of windows. These might often stay

unchanged until the last departure, during which the occupant returns the

zone to its unoccupied state (with, for example, lights and appliances being

switched off, windows closed, etc), knowing (s)he will not be back until the

next day or beyond.

Although most values of arrival and departure correspond approximately to

values one would expect (arrival around 8:00 ± 1 hour - corresponding to 32±4

quarters of an hour, departure around 18:00 ± 1 hour - corresponding to 72±4

quarters of an hour) and that are adopted by other models of occupancy, the

figures show that the times of arrival and of departure are particular to the

occupant and that these times can depend on the day of the week simulated,

explaining the lesser peaks. Although the results from the model do sometimes

differ from the original data it has clearly picked up these trends. Values might

be off by a time step or two (15 to 30 minutes) and the peaks from the original

data might be spread out a little but the model captures quite well the different
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Fig. 6. Comparison, between the monitored data (green solid line) and the simulated

time series (dotted red line), of the PDFs and CDFs of the time of “first arrival” into

the zone for four private offices. The blue histograms correspond to the repeated

use of a standard fixed profile.

characteristics, recognising the main peak while also reproducing the later

arrivals, earlier and later departures as well as the days of longer or shorter

daily presence. It should be pointed out that the occasional very early arrivals

that appear in the simulations are the result of the model reproducing the

non-zero probability of the occupant being present overnight that can be seen

in the profile of probability of presence entered as input (figure 5). One can

also notice in figure 8 the stochastic nature of the model: while some occupants

will depart exactly ten hours after a first arrival that might fluctuate around

an average (offices 1, 2 and 4), the simulated occupant might arrive and leave

a bit earlier or later without the two being strongly correlated (just like the

behaviour of the occupant of office no.3).
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Fig. 7. Comparison, between the monitored data (green solid line) and the sim-

ulated time series (dotted red line), of the PDFs and CDFs of the time of “last

departure” from the zone for four private offices. The blue histograms correspond

to the repeated use of a standard fixed profile.

3.4.2 Periods of intermediate presence and absence

Figures 9 and 10 show the distribution of periods of presence and of short

absence (less than 24 hours). So far the models that have tried to reproduce

periods of intermediate presence and absence 7 have done so by assuming their

duration is distributed exponentially and is independent of time. Standard

profiles of occupancy propose the histograms shown with the CDFs; they

correspond to 2 periods of 4 hours of presence separated by a two hour lunch

break and the fourteen hours of absence between the last departure (at 18:00)

of one day and the first arrival (at 8:00) of the next. The periods of short

absence simulated by the model can be split into periods of such absence

7 Wang had some success in the case of periods of absence, while Yamaguchi has,

to our knowledge, not published any validation of their model.
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Fig. 8. Comparison, between the monitored data (green solid line) and the simulated

time series (dotted red line), of the PDFs and CDFs of the “daily presence” within

the zone for four private offices. The blue histograms correspond to the repeated

use of a standard fixed profile.

between workdays (the lower peak at the right of the figure) and periods of

intermediate absence (to the left and smaller than, let us say, 48 quarters of an

hour). Periods of very short presence and absence (15-30 minutes) are clearly

underestimated in the case of absence and only slightly in that of presence.

Nevertheless the model confirms that presence does not follow an exponential

curve and that each occupant has her/his own behaviour, which the model

picks up rather well. The lack of very short periods favours the occurrence of

longer periods; a confirmation of this can be seen in the distributions of the

number of changes per day of figure 11. These appear in pairs as none of the

occupants ever stayed present overnight; each arrival is therefore followed by

a departure. The model suffers from two flaws:

(1) it underestimates the number of days of total absence,
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Fig. 9. Comparison, between the monitored data (green solid line) and the simulated

time series (dotted red line), of the PDFs and CDFs of “periods of short absence”

for four private offices. The blue histograms correspond to the repeated use of a

standard fixed profile.

(2) it underestimates the number of changes by approximately one pair, sug-

gesting less intermediate periods of absence and presence than seem to

take place.

This last discrepancy is linked to the drop in value of the parameter of mobility

mentioned earlier; and, as occupants move less than in reality but their daily

presence is realistically reproduced, longer periods of intermediate presence

and absence will be slightly favoured as we have observed.

3.4.3 Effective time spent in the zone

So far we have discussed :
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Fig. 10. Comparison, between the monitored data (green solid line) and the simu-

lated time series (dotted red line), of the PDFs and CDFs of “periods of presence”

for four private offices. The blue histograms correspond to the repeated use of a

standard fixed profile.

(1) the times of arrival and departure of the occupant, stressing that these

are the instants of a day when the occupant is most likely to interact with

her/his environment (as observed for example by [11]), as well as the daily

presence that gives an idea of how long the occupant will actively (when

present) or passively (when temporarily absent) interact with the zone,

(2) the number of changes of the state of occupancy and the durations of

periods of presence and short absence that take place during one day,

that give an idea of how often the occupant might interact with her/his

surroundings at intermediate arrivals and departures.

What we need to know now is how much time the occupant effectively spends

in the zone during a day, a week or the whole year. This will govern what heat

gains and pollutants each occupant will emit as well as how much total time
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Fig. 11. Comparison, between the monitored data (green solid line) and the simu-

lated time series (dotted red line), of the PDFs and CDFs of the number of changes

for four private offices. The blue histograms correspond to the repeated use of a

standard fixed profile.

the occupant has to affect her/his zone of occupancy. This can be deduced

from the presence cumulated (i.e. total number of 15 minute time steps) over

one day or over a whole week.

Figure 12 shows the total number of quarter hours of presence during a whole

week. As we can see from the monitored data, although the occupants’ du-

ration of daily presence is typically greater than 12 hours (48 quarters of an

hour per week), her/his effective cumulated presence over one week averages

to around 24 hours. This is explained by the great movement of occupants and

the work time they spend outside of their office. It can also be explained by

days of total absence from the zone that called for the revision of the model we

mentioned earlier. By adding periods of prolonged absence we have been able

to adapt our model to weeks of total absence and weeks of overtime giving
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Fig. 12. Comparison, between the monitored data (green solid line) and the simu-

lated time series (dotted red line), of the PDFs and CDFs of the “cumulated pres-

ence” over one full week for four private offices. The blue histograms correspond to

the repeated use of a standard fixed profile.

us a similar spread distribution as with the collected data. A chi-squared test

with α = 0.95 confirms that both histograms could be the result of the same

distribution for these four offices.

Even though the addition of periods of long absence to the model has dras-

tically improved its performance we still seem to underestimate the number

of days of complete absence. This can be seen from the value of the CDF at

0 quarters of an hour in figure 13, that teaches us that approximately 35 to

40% of days include no period of presence (2 days of absence per week, such

as a weekend, would correspond to 28.5%) while the model only predicts an

absence of 23 to 28%. The top part of figure 13 shows the whole PDF of this

distribution. By subtracting the bin of zero presence we get an idea of what

the distribution of cumulated presence looks like for days when the occupant
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Fig. 13. Comparison, between the monitored data (green solid line) and the sim-

ulated time series (dotted red line), of the PDFs and CDFs of the “cumulated

presence” over one day for four private offices. The blue histograms correspond to

the repeated use of a standard fixed profile. The bottom figure corresponds to the

same PDF as above without a value of cumulated presence equal to zero.

appears for at least 15 minutes (see bottom line of plots in figure 13). This

shows us how well the model reproduces the statistic and how it covers very

closely the whole span of the distribution.

4 Discussion

To fully grasp the contribution of the model of presence it is important to

compare it with models already available. Those recently developed by Wang

[14] and Yamaguchi [15] are the first capable of simulating realistic periods

of presence and absence between an occupant’s arrival and departure from

an office. However they are based on the fact that the duration of periods

of presence is time-independent and omit the inclusion of periods of long ab-
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sence. Both Wang’s analysis and the validation of our model (see figure 10)

have shown that the former hypothesis is wrong whereas the validation of a

previous version of the model presented in this article highlighted how impor-

tant it is to consider periods of long absence when generating a time series of

occupant presence. All other methods used to model occupant presence can be

summarised by the repetition of a standard or averaged fixed profile, with, in

the best of cases, the spreading of times of arrival and departure using a Gaus-

sian distribution in order to avoid strong peaks [7]. The results above have

shown that our model, while having simple inputs, is capable of producing

a non-repeating time series of any length, including essential periods of long

absence and otherwise reasonable movements to and from the zone resulting

in an excellent estimate of the total time an occupant really spends within

the zone simulated. It is true that the model underestimates the amount of

days of total absence as well as the amplitude of real movement into and out

of the offices. The former must be due to an underestimation of the number

or duration of periods of long absence. 8 The latter is probably due to the

recalculation of the parameter of mobility. These two aspects need to be bet-

ter understood and improved. Nevertheless the model has still proven itself

capable of simultaneously:

- reproducing periods of absence,

- picking up the trends of periods of presence that cannot be simply mod-

eled by an exponential distribution,

8 The probability that the Markov chain alone might produce a work day of com-

plete absence is extremely small as it will try at each time step to direct the sim-

ulated profile of occupant presence towards the profile of probability of presence it

is given as an input.
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- smoothing the peaks of times of arrival and departure,

- while also considering days of atypical presence or of total absence.

Although the benefits of the model will become apparent in terms of numbers

only once it is coupled to models of occupant behaviour, one can already assert

from the distributions shown in figures 5 to 13 that:

- (figure 5) people working during weekends will need power and maybe

heating or cooling that will be predicted neither by the standard model

nor by Wang’s model, but will be by our model.

- (figure 6) Likewise, arrival earlier than that predicted by other models

will correspond to one hour of extra-lighting during the darkest days of

the year, just as later arrival can correspond to saved lighting,

- (figure 7) early departure could correspond to saved hours of lighting,

- (fig. 9 and 10) there is potential for saving electricity by implementing a

smart switch-off option for appliances and lights left on when occupants

are not present during periods of intermediate absence.

- The clear difference between figures 8 and 13 shows that, although oc-

cupants might be “at work” approximately ten hours a day, they only

spend about half that time in their office. This corresponds to a decrease

of 50% of the predicted metabolic heat gains (within that zone) as well

as a potential decrease in electricity consumption linked to the non-use

of lights and appliances.

While there is still room for its improvement the model already produces a

realistic picture of occupant presence within zones of a building, the basis for

related models of occupant interactions with their environment.
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The model has been conceived in such a way that it can simulate any pattern

of occupancy of any type of building when given the corresponding inputs.

This general nature of the model has allowed us to validate it with data from

an office building and still claim that it will be useful for the simulation of any

other type of building, in particular residential buildings. The data used for

the calibration of the model being more detailed than normally available, the

authors are now working on the simplification of the profiles of probability

of presence and their temporal resolution and observing the effect of this

simplification on the model’s accuracy, as well as a preparation of guidance

for the best use of the model (estimation of µ, entering of profiles of probability

of presence and their temporal resolution, entering of inputs related to periods

of long absence).

5 Conclusion

The better we build our buildings, the more impact the people living in them

will have on their consumption of resources. While simulation tools reproduce

the deterministic physical behaviour of buildings with ever greater detail, the

behaviour of their inhabitants has so far been represented by repeating stan-

dard patterns of occupant presence and occupants’ use of elements such as

lights and appliances. These assumptions lead to considerable errors in pre-

dictions of the peak demand in resources of a building, which in turn will

strongly influence the choice and sizing of the means (HVAC systems, sup-

plies for power and water - hot and cold) used to cover that demand. Yet con-

sidering occupant behaviour is not only important for the prediction of peak

demand. In [9] Bourgeois has shown that “building occupants that actively
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seek daylighting rather than systematically relying on artificial lighting can re-

duce overall primary energy expenditure by more than 40%, when compared

to occupants who rely on constant artificial lighting.” Thus by integrating

into building simulation tools the variety of ways people occupy a building

and interact with it one can conceive and assess new ways to save energy and

enhance occupants’ comfort within buildings.

In this article we have proposed an important step towards integrating the

effect of occupant behaviour into modern building simulation tools, namely

the modeling of occupant presence. Although relatively simple it has proven

itself capable of reproducing important characteristics such as the times of

first arrival and of last departure, typical long absences and the effective time

of presence of the occupant within the zone of simulation using only a small

set of simple inputs. The model produces a time series of the state of presence

that includes the typical randomness of human behaviour: each person arrives

into and departs from the zone they occupy at different times; people tend to

enter and leave the zone several times during a typical period of occupancy,

reducing the amount of total time spent in the zone and increasing the number

of departures from and arrivals into the zone; people may be absent from the

zone during long periods of time. This gives a more realistic picture of the

time the occupant spends in the zone and how often (s)he might interact with

her/his indoor environment; it also avoids the unnatural peaks that arise from

repeating the same pattern for each occupant. The model does not simulate

the displacement of occupants from one zone to another.

Our future efforts will be dedicated to making the model easy for the potential

user to handle. For this purpose we will work on simplifying the profile of

probability of presence and helping the user in her/his choice of parameters
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of mobility and periods of long absence.
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